de Finetti Priors using Markov chain Monte Carlo computations

نویسندگان

  • Sergio Bacallado
  • Persi Diaconis
  • Susan Holmes
چکیده

Recent advances in Monte Carlo methods allow us to revisit work by de Finetti who suggested the use of approximate exchangeability in the analyses of contingency tables. This paper gives examples of computational implementations using Metropolis Hastings, Langevin and Hamiltonian Monte Carlo to compute posterior distributions for test statistics relevant for testing independence, reversible or three way models for discrete exponential families using polynomial priors and Gröbner bases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Chain Monte Carlo using Tree-Based Priors on Model Structure

We present a general framework for defining priors on model structure and sampling from the posterior using the Metropolis-Hastings algo­ rithm. The key ideas are that structure priors are defined via a probability tree and that the pro­ posal distribution for the Metropolis-Hastings al­ gorithm is defined using the prior, thereby defin­ ing a cheaply computable acceptance probabil­ ity. We hav...

متن کامل

Iterative Markov Chain Monte Carlo Computation of Reference Priors and Minimax Risk

We present an iterative Markov chain Monte Carlo algorithm for computing reference priors and minimax risk for general parametric families. Our approach uses MCMC techniques based on the Blahut-Arimoto algorithm for computing channel capacity in information theory. We give a statistical analysis of the algorithm, bounding the number of samples required for the stochastic algorithm to closely ap...

متن کامل

Default Analysis of Mixture Models using Expected

Consider observations Y , distributed according to a mixture of densities Y P k j=1 w j f(j j); where 0 w j 1, P w j = 1, k and j correspond to unknown parameters of the mixture. In the a Bayesian framework, it is not possible to perform a default statistical analysis of the mixture using non-proper priors, N , for the component parameters, since the posterior distribution of these do not exist...

متن کامل

A Framework for Expressing and Estimating Arbitrary Statistical Models Using Markov Chain Monte Carlo

YADAS is a new open source software system for statistical analysis using Markov chain Monte Carlo. It is written with the goal of being extensible enough to handle any new statistical model and versatile enough to allow experimentation with different sampling algorithms. In this paper we discuss the design of YADAS and illustrate its power through five challenging examples that feature unusual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and computing

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2015